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Fermionic Linear Optics and Matchgates 

E. Knill 
knill@lanl.gov 

Abstract 

Fermionic linear optics is efficiently classically simultable. Here it is shown that the set 
of states achievable with fermionic linear optics and particle measurements is the closure of a 
low dimensional Lie group. The weakness of fermionic linear optics and measurements can 
therefore be explained and contrasted with the strength of bosonic linear optics with particle 
measurements. An analysis of fermionic linear optics is used to show that the two-qubit match- 
gates and the simulatable matchcircuits introduced by Valiant generate a monoid of extended 
fermionic linear optics operators. 

1 Introduction 

It is conjectured that standard quantum computation is more efficient than probabilistic computa- 
tion. The conjecture is supported by the ability to efficiently factor large numbers [l] and simulate 
physics [2] using quantum computers, by proofs that quantum computers are more powerful with 
respect to some black boxes [3], and by results [4] showing exponential improvements in commu- 
nication complexity. 

To delineate the conjecture one can consider models of computation where the basic operations 
are multiplication of linear operations in a given set G. Each operation in G is associated with a 
complexity (e.g. the length of its name), so that the complexity of a product 9192. . . is the sum of 
the complexities of the gi. One can then ask questions about the complexity of calculating qantities 
like: 1. Computing the entries in a standard basis of a product. 2. Computing the trace of a product. 
When G is the a set of elementary quantum gates, the power of quantum computers is equivalent 
to being able to efficiently sample from a probability distribution with expectation an entry of a 
product and variance O(1) (see [SI). The power of one-bit quantum computers [SI is equivalent 
to sampling from a probability distribution with expectation the trace of a product and variance 
0(2n), where n is the number of qubits. 
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A special case is when the set G is the group of operators normalizing the group generated by 
the Pauli matrices (bit flip, sign flip). For n qubits, this group has order 2°(n2) and plays a crucial 
role in encoding and decoding stabilizer codes [6] and in fault tolerant quantum computation [7]. 

In [8] it is shown that even when this group is extended by projections onto the logical states of 
qubits, the complexities of the two questions above are polynomial. Two similarly defined groups 
are the linear optics operators for fermions and bosons. In both cases, the groups are Lie groups 
of polynomial dimension in the number of modes. (Modes play the same role as qubits in these 
systems). A few simulatability results were known for these groups. For example, for bosons, the 
orbit of the vacuum state under the linear operations consists of Gaussian states, for which many 
relevant quantities can be efficiently computed. Similarly, particle preserving linear operations 
applied to exactly one boson lead only to states that are equivalent to classical waves [9]. 

Recently, Valiant [ 101 demonstrated a set of products of operators (those definable by a class of 
“matchcircuits”) for which the complexities of the first questions and many of its generalizations 
are polynomial. Terhal and DiVincenzo [ 111 realized that this set includes the unitary linear oper- 
ations for fermions and that as a consequence, it is unlikely that it is possible to realize quantum 
computation in fermions by means of linear operations and particle detectors with feedback. They 
give a direct and efficient simulation of these operations based on fermionic principles. This result 
is at first surprising: In [ 121 it was shown that with bosons, linear operations and particle detectors 
with feedback are sufficient for realizing quantum computation. The difference between fermions 
and bosons is explained by realizing that the effects of particle detectors are expressible as limits 
of non-unitary linear operations in fermions but not in bosons. As a result, the states achievable 
with fermionic linear operations and particle measurements are in the closure of a “simple” set. 

Since matchgate operations are non-unitary, one can ask what additional power is provided by 
Valiant’s simulation of matchgates. Here it is shown that the two-qubit matchgates generate the 
monoid which is the closure of a group of extended fermionic linear operators in the Jordan-Wigner 
representation [ 131. This group defines the nondeterministic computations that can be physically 
realized with unitary linear operation and particle measurements. The equivalence of two-qubit 
matchgates and linear fermionic two-qubit operations generalizes to the set of simulatable match- 
circuits introduced by Valiant. 

2 Linear Fermionic Operations 

Let I ,  X(’), Y(’), Z ( k )  denote the identity and the Pauli operators acting on qubit k. Define Uk = 

2(l) . . . Z(”‘)U(‘) (U, = U(’)) for U = X ,  Y .  Then the U’ define a representation of fermionic 
mode operators. In particular, (Xk + 2Y’)/2 and (& - 2&)/2 represent the annilation and cre- 
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ation operators for mode k .  It is straightforward to check the appropriate commutation and anti- 
commutation relationships. Let C1 be the linear span of the identity together with the U’ for 
1 5 IC 5 n, where n is the number of qubits. The set 9 of fernionic linear optics operators is 
the set of invertible matrices that preserve C1 by conjugation. That is, g E S1 iff for all A E Cl, 
gA9-l E C1. The terminology refers to the property that conjugation of an annihilation or a cre- 
ation operator results in a linear combination of such operators. Let 122 be the set of products of 
two operators in C1, so that C2 = LIC1. ‘The group 9 2  of extended linear optics operators is the set 
of invertible matrices that preserve C2. Note that 81 C 62. (In bosons, the analogous definitions 
lead to identical groups.) The group 82 is considered to be “unphysical” for fermions, due to the 
presence of odd products of annihilation and creation operators. Nevertheless, the present work 
shows that it is interesting and useful. 

The space C2 is a (complex) Lie algebra. It is spanned by Pauli operator products given by 
I ,  U(’), Z(’) , and U(’)Z(’+’) . . . 2(k+l)V(kf’+1) with U, V E { X ,  Y } .  The dimension of L2 is 
2n2 +n+ 1. By considering general sums of Pauli products, one can check that if for every A E L2, 
[X, A] E La, then X E &. It follows that C2 is the Lie algebra of Q2. All strictly quadratic (in Cl) 
terms of L2, together with the identity also form a Lie algebra Cl, of dimension 2n2 - n, which is 
the Lie algebra of Physically, realizable operators are continuously generated from the identity. 
As a result, for the remainder of the paper, Si is assumed to be given by the exponentials of 

In using (extended) linear operators for computation, one starts with the vacuum state Iv,) = 

10 . . . O),.,,, and applies operators in S1 (G2) and measurements in the number basis IO), 11). The 
outcomes of measuremenfs are described by applying the measurement projections 10) (01 = ; ( I+ 
Z(’)) and 11) (1 I = (I + Z(‘)). For standard computation, which projection “happens” is deter- 
mined by the square amplitude of the result of applying it. For nondeterministic computation we 
can “choose” the outcome. In either case, analysis of the capabilities requires studying products of 
operators in Qi and the measurement projections. Let Si be the monoid given by closure of Gi. 

If Sz could be used for efficient faithful quantum computation, then S21v) has to contain suffi- 
ciently large subspaces. That is, the 2m dimensional state space of m qubits must be contained in 
&lvn) with n = U(poly(n)).  The following theorem makes this unlikely. 

Theorem 1 S2 is contained in the closure of Q2. 

Proof. This is a consequence of the fact that the measurement projections are limits of elements 
of 92: 

‘Without a proof that this assumption holds, it is possible that the groups studied here are only the component of 
the identity of the originally defined groups. 



Since 92 is a 2n2 + n + 1-dimensional Lie group, Thm. 1 implies that S21vn) is the closure 
of a small dimensional space. This suggests that S, is not sufficiently strong for quantum compu- 
tation. The fact that the normalizer of the Pauli group together with standard measurements are 
insufficient [8] follows in a similar way. That is, applying normalizer operators and projections 
onto stabilizer codes to the standard initial state results always.in stabilizer states. 

Note that a similar result can not be shown for bosonic linear operators with particle measure- 
ments. Only the projection operator onto the 0 boson state of a system is expressible as a limit of 
(non-unitary) linear operators. This explains why efficient linear optics quantum computation is 
possible [ 121. 

3 Matchgates and Linear Operations 

In [lo], Valiant introduced a family of linear operators (called matchgates) acting on qubits using a 
graph theoretic construction, and showed that under certain conditions, the coefficients of matrices 
defined by products of matchgates could be efficiently calculated. Matchgates acting on two qubits 
were shown to satisfy a set of 5 equations, the matchgate identities. If B is the matrix defined by a 
matchgate acting on two qubits, then the following are 0: 

MI 

A 4 2  

= (001 B 100) (1 1 IB111) - (101 B I 10) (01 1B 101) - (001 B 11 1) (1 1 I B 100) + (101 B 101) (01 IB 1 10) 

(2) 

( l o p  100) (1 1 I B 11 1) - ( l o p  110) (1 1 IB 101) - (1 1 I B 100) (10 IB 11 1) + (101 B 101) (1 1 I B 110) 

(3) 

(01 I BJOO) (1 1 IB111) + { 01 I B 101) (1 11 B I 10) - (1 1 IBI 00) (01 IB 11 1) - (01 IB 110) (1 1 ll? 101) 

(4) 

(00 I B 101) (1 1 IB 11 1) + (01 IB 101) (10) a( 11) - (001 B 11 1) (1 1 I B 101) - (101 B 101) (01 I B 11 1) 

(5 )  

M5 = (00~B~10)(11)BJll)  - (10~B~10)(01~BJl l )  - (00)BJ11)(11)BJ10) + (01)B~10)(10~Bpl) 

(6)  

= 

M3 

M4 = 

Let M2 be the set of matrices B satisfying the identities Mi = 0 and either (11(B( 11) # 0 or B is 
diagonal. Valiant showed that these matrices are realizable by matchgates. 

Theorem 2 The closure of MP is S, for two qubits. 



Proof. The Lie algebra which generates S2 is spanned by the 11 operators 

L = { I I , X I ,  Y I ,  Z I ,  zx, Z Y , X X , X Y ,  Y X , Y Y ,  I Z }  (7) 

Here UV abbreviates U(1)V(2). One can check that for A E L \ { I I } ,  A ( Y X )  + (YX)AT  = 0: 
It suffices to note that if AT = A, then A anticommutes with Y X ,  and if AT = -A, which 
is the case if A contains an odd number of Y's, then A commutes with Y X .  (This property 
generalizes for arbitrary number of qubits, using the operator Y X Y X  . . . instead of Y X . )  The 
identity A(YX)  + ( Y X ) R T  = 0 can be rewritten in the form ( A  @ I + I @I A)T = 0, where T is 
the antisymmetric vector 

T = ~ 0 0 ) ~ l l )  - ~ l l ) ~ O O )  + ~ 0 l ) ~ l O )  - Il0)lOl). (8) 

This means that T is an eigenvector of the Lie group C generated by L @ L = { A  @ I + I @ A : A E 
L}. Note that C = {B 8 B : B E G2).  C preserves antisymmetric vectors, so the statement that 
CCT oc 7' is equivalent to RTCT = 0 for all R antisymmetric such that RTT = 0. The dimension 
of such R is 5, and here is a basis: 

R1 = l0o)pl) - p l ) ~ o o )  - ~ 0 l ) ~ l O )  + ~ l 0 ) ~ O l )  

Rz = ~00)~Ol)  - l0l)lOO) 

R3 = ~00)~lO)  - ~l0)~OO) 

Rq = j 0 l ) p l )  - I1l)lOl) 
Rs = Il0)lll) - I 1 l ) l l O )  

Define the expressions 

Since for two qubits LT == Lz, members B of gz satisfy the identities Ei = 0, ET = 0. Because 
these identites are all derived from an eigenvector condition, the set of matrices B satisfying them 
is a monoid G; containing Gz. 

Using the equivalence 

one can check that the following hold 

&+ET -= 4MI 



E4 = 2M3 

E5 = 2M2 

ET = 2M4 

E: = 2M5 

(11IBI11)(E1 -ET) = 4((01 

Mathematica instructions to check the above relationships are included verbatim in Appendix A. 
Since diagonal matrices trivially satisfy E, = 0, E: = 0 (i > 1) and El - ET = 0, the 

identites imply that M a  C Gi. Let ML = { B  E Ma : (11IBI11) # O}. By directly solving for 
the entries of B other than (llIBI11) in the first summand of the Mi, one can see that M i  is an 
analytically coordinatizable 1 1 complex dimensional manifold. The diagonal members of M2 are 
in the closure of Mi. 

The identities also imply that the elements of 8 2 ,  and therefore those of S2, satisfy Mi = 0. It 
follows that the B E S2 with B diagonal or (llIB(11) # 0 are in M2. 

For invertible B, the identites Ei = 0 imply that B ( X Y ) B T  = XXY for X # 0. It follows 
that the tangent space at B is exactly that of G2 at B. Consequently, M i  and 8 2  contain the same 
invertible matrices satisfying (1lIBI11) # 0. It remains to show that these matrices are dense 
in both sets. For M i  it suffices to observe that for fixed (11IB]11) # 0, their is an invertible 
B E M i ,  which implies that the determininant function is not null on this linearly defined subset. 
Hence the complement of the determinant’s null set is dense. For G2 the density property follows 
from the fact that the subgroup generated by X I  and X X  acts transitively on the basis states. 
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4 Simulatable Matchcircuits 

Valiant showed that any composition of operators consisting of two qubit matchgates on the first 
is efficiently simulatable in the 

following sense: If B is a product of m such gates, then many sums of squares or square norms of 
entries of B can be computed efficiently in m and n (the number of qubits). Let M be set of all 
products of the gates mentioned. 

two qubits and gates of the form e t(X(")X(k-t'))  and ei!(y(k)y(k+l))  

Theorem 3 The closure of M is 8 2 .  

Proof. By definition and by Thm. 2, m- C S2. It suffices to show that the invertible operators 
in M generate G2. This can be checked directly by using the Bloch sphere rules for conjugating 
products of Pauli matrices by 90" rotations (e- iuK/4)  around other products [14]. For example, 
Z(1)Z(2)X(3) is obtained by conjugating Z(1)Y(2) with a rotation around X ( 2 ) X ( 3 ) .  The operator 
Z(3)  is obtained by conjugating Z(1)Z(2)X(3)  with a rotation around Z ( 1 ) Z ( 3 ) Y ( 3 ) .  The latter op- 
erator can be deduced similarly to the way 2 ( 1 ) Z ( 2 ) X ( 3 )  was obtained. Induction can be used to 
extend to arbitrarily many qubits. 

5 Concluding Comments 

It is true that bosons can be represented by paired fermions. So why does this not lead to an efficient 
realization of quantum computers by using this representation together with techniques for bosonic 
linear optics? One answer is that the bosonic linear operators in this representation correspond to 
Hamiltonians that are quartic in the annihilation and creation operators and are therefore not in 
La. It is in fact not hard to see that adding to C2 only the Hamiltonian 2(1)2(2), the Lie algebra 
generated contains all products of Pauli matrices and so generates all invertible matrices 1151. 
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A Checking the Matchgate Identites 

( *  Mathernatica notes. * )  

( *  Useful rules: * )  

Unprotect [Dot] ; 
Dot[tensor[a-,b-],tensor[c_,d_l3 = (a.c)*(b.d); 
Dot[-a-,b-l = -(a.b); 
Dot [a_., -b-1 = - (a.b) ; 
Dot [-a,-, -b-I = (a.b) ; 

( *  For  obtaining t,he equation for the transpose: * )  

trnsprls = (bEc-3 .k[d-l -> b[dl .k[cl>; 
( *  For obtaining t,he equation for the conjugate by XX: * )  

xxrls = {xOO->xll,xO1->xlO,xlO-~xOlr xll->xOO); 
( *  Swa.pping: * )  

swprls = {xO1-~x1O,x1O-~xO1}; 
lswprls = {b[x01]--~b[x101 ,b[x10I->b[x011~; 

( *  Conventions: 
* b[xabl stands fior $\bra{ab}$, k[xabl for $\ket{ab}$. 
* Quadradic expressions for a matrix B are expressed 
* $\trace(X (B\tensor B ) ) $  with X in the appropriate 
* tensor product space. X is given for various expressions. 
* This way the expression (b[xOOl .k[xOOl) *(b[xlll .k[xOl]) 
* refers to the product $\bra{OO~B\ket{OO}\bra{ll}B\ket{Ol}$. 
* )  

( *  Matchgate expressions: * )  

MI = t~ensor[b[x00~,b[xlll1 .tensor[k[x00l,k[xllll f 
- tensor[b[xlOl ,b[xOl]] .tensor[k[xlOl ,k[xOlll + 
-. tensor[b[xOOl ,b[x11]] .tensor[k[xlll ,k[x00]1 + 
+ tensor[b[x10],b[x01]] .tensor[k[x01l,k[x10]1; 

- tensor[b[xlOl,b[xll]] .tensor[k[x10I,k[x0113 + 
- tensor[b[xlll ,b[xlO]] .tensor[k[xOOl ,k[xllll + 

M2 = tensor[b[xlOl ,b[xlll I . tensor[k[xOOI, k[xllll + 
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+ tensor[b[xlOl ,b[xllll .tensor[k[x011,k[x1011; 

+ tensor[b[x0ll,b[xlll1 .tensor[k[x01I,k[x1011 + 
- tensor[b[xll] ,b[xOlll .tensor[k[xOO] ,k[xll]] + 
- tensor[b[xOll ,b[xllll .tensor[k[xlOl ,k[xOlIl; 

i- tensor[b[x011,b[x1011 .tensor[k[xOll,k[xlll] + 
- tensor[b[xOOl ,b[xlll I .tensor[k[xlll ,k[xOlIl + 
- tensor[b[xlO] ,b[xOlll .tensor[k[xOl] ,k[xlll]; 

- tensor[b[xlO] ,b[xOlll .tensor[k[xlOl ,k[x11]] + 
- tensor[b[xOOl ,b[x1111 .tensor[k[xlll ,k[xlOIl + 
+ tensor[b[xOll ,b[x10]1 .tensor[k[xlOl ,k[x111 I ; 

M3 = tensor[b[xOll ,b[xll] 1 .tensor[k[xOOl ,k[xlll I + 

M4 = tensor[b[xOO] ,b[xll] 1 .tensor[k[xOll ,k[x11] I + 

M5 = tensor[b[xOO] ,b[xll] 1 .tensor[k[xlOl ,k[xlll I + 

( *  Check: 
M3 - (M4/.trnsprls) 

* = o *  
* 

M2 - (M5/.trnsprls) 
* = O *  

* )  

( *  Lie expressions: * )  

T = tensor[k[xOO] ,k[xll]] - tensor[k[xlll ,k[xOOl I + 

R1 = tensor[b[xOO] ,b[xll] I - tensor[b[xlll ,b[xOOl] + 
tensor[b[xlOl ,b[xOl] 1 - tensor[b[xOll ,b[xlOl]; 

R2 = tensor[b[xOO] ,b[xOl] 1 - tensor[b[xOll ,b[xOOIl; 
R3 = tensor[b[x001 ,b[xlO] 1 - tensor[b[xl01 ,b[x00]] ; 
R4 = tensor[b[xOll ,b[xll] 1 - tensor[b[xlll ,b[x01]] ; 
R5 = tensor[b[xlOl ,b[xllll - tensor[b[xlll ,b[xlOl]; 

tensor[k[x01] ,k[xlO]] - tensor[k[xlOl ,k[x01] I ;  

El = Distribute[Rl.Tl; 
ET1 = El/.trnsprls; 
E2 = Distribute[R2.T]; 
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ET2 = E2/.tmsprls; 
E3 = Distribute[R3.T]; 
ET3 = E3 / . trnsprla; 
E4 = Distribute[Rd.TI; 
ET4 = E4/.trnsprls; 
E5 = Distribute[Rs.TI; 
ET5 = E 5 / .  tmsprls; 
( *  Check: 
Simplify[El+ETl -. 4*M11 

* = o *  
* 

Simplify[ (b[xll] .k[xll]) * E2 - 
2 *  ( 

(b[x011 .k[xll] ) *M1 + 

(b[xOll .k[xlO]) *M4 + 
- ( ~ [ X O O ]  .k[xll] ) *M3 + 

- (b[xOl] .k[xOl] ) *M5 
1 1  

* = o *  
* 

Simplify[ (b[xll] ,,k[xll]) * E3 - 

2 *  ( 

- (b[xOOl .k[xlT] ) *M2 + 
-(b[xlO] .k[xOl])*M5 + 
(b[xlOI .k[xlOl)*M4 + 
(b[xlOl .k[x111) *M1 

1 1  
* , o *  
* 
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SimPlify[(Ml/.trnsprls) - Ml] 
* = o *  
* 

Simplify[(M2/.lswprls) - M3] 
* 0" 

* 

Simplify[ (E2/.lswprls)-E3] 
* = 0" 
* 

Simplify[(b[xlll .k[xlll)*(El - (El/.trnsprls)) - 
4 *  ( 

b[xOl] .k[xlll*M2 + 
-b[x10] .k[xll]*M3 + 
-b[xll] .k[xOl] *M5 + 

b[xlll .k[xlO]*M4 
) I  

* = 0 "  

* 

* This confirms the identites claimed in the text. 
* )  


